Three Dimensional Discontinuous Galerkin Methods for Euler Equations on the Adaptive Consistent Meshes

نویسنده

  • Xu Yun
چکیده

In the numerical simulation of three dimensional fluid dynamical equations, the huge computational quantity is a main challenge problem. Based on the three dimensional consistent unstructured tetrahedron meshes, we study the discontinuous Galerkin (DG) finite element method [1] combined with the adaptive mesh refinement (AMR) [2, 3] for solving Euler equations in this paper. That is according the equation solution variation to refine and coarsen grids so as to decrease total mesh number. The four space adaptive strategies are given and analyzed their advantages and disadvantages. Meanwhile, to overcome lower temporal computational efficiency in the explicit time discretization of AMR with a large number of refinement levels, we adopt the local time stepping (LTS) technique [4] and the arbitrary high order of accuracy (ADER) scheme [5] in time and space. The numerical examples show the validity of our methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes

We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...

متن کامل

Error estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations

Adjoint consistency – in addition to consistency – is the key requirement for discontinuous Galerkin discretisations to be of optimal order in L as well as measured in terms of target functionals. We provide a general framework for analysing adjoint consistency and introduce consistent modifications of target functionals. This framework is then used to derive an adjoint consistent discontinuous...

متن کامل

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...

متن کامل

A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws

ABSTRACT We introduce a new troubled-cell indicator for the discontinuous Galerkin (DG) methods for solving hyperbolic conservation laws. This indicator can be defined on unstructured meshes for high order DG methods and depends only on data from the target cell and its immediate neighbors. It is able to identify shocks without PDE sensitive parameters to tune. Extensive oneand two-dimensional ...

متن کامل

Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010